United States Geological Survey
Reston Stable Isotope Laboratory

Report of Stable Isotopic Composition
Reference Materials GFLES-1, GFLES-2, GFLES-3, and GFLES-4
(Hydrogen and Oxygen Isotopes in Water)

These reference materials (RMs) are intended for normalization of stable hydrogen-isotope (δ^2H) and oxygen-isotope (δ^{18}O and δ^{17}O) measurements of waters with an isotope-ratio mass spectrometer or a laser absorption spectrometer [1]. A unit of these RMs consists of one autoclaved glass ampoule containing 5 mL of water. A set of one each of GFLES-1, GFLES-2, GFLES-3, and GFLES-4 reference waters, for a total of four glass ampoules, is also available (20 mL total).

Recommended Values: Stable hydrogen and oxygen isotopic compositions are expressed herein as delta values [2] relative to VSMOW (Standard Mean Ocean Water) on scales normalized such that the δ^2H, δ^{18}O, and δ^{17}O values of SLAP (Standard Light Antarctic Precipitation) are −428 ‰, −55.5 ‰, and −29.70 ‰, respectively [3-6]. Each stable isotopic composition is given as a reference isotope-delta value with an estimated combined uncertainty (1 σ) about the reference value that provides an interval that has about a 68-percent probability of encompassing the true value.

<table>
<thead>
<tr>
<th>Name</th>
<th>δ^2H_{VSMOW-SLAP}</th>
<th>δ^{18}O_{VSMOW-SLAP}</th>
<th>δ^{17}O_{VSMOW-SLAP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLES-1</td>
<td>+80.1 ± 0.4 ‰</td>
<td>−6.25 ± 0.04 ‰</td>
<td>−3.32 ± 0.40 ‰</td>
</tr>
<tr>
<td>GFLES-2</td>
<td>+159.9 ± 0.4 ‰</td>
<td>−6.21 ± 0.04 ‰</td>
<td>−3.30 ± 0.40 ‰</td>
</tr>
<tr>
<td>GFLES-3</td>
<td>+280.2 ± 0.4 ‰</td>
<td>−6.14 ± 0.04 ‰</td>
<td>−3.28 ± 0.40 ‰</td>
</tr>
<tr>
<td>GFLES-4</td>
<td>+399.8 ± 0.4 ‰</td>
<td>−6.08 ± 0.04 ‰</td>
<td>−3.25 ± 0.40 ‰</td>
</tr>
</tbody>
</table>

Technical coordination for this RM was provided by Haiping Qi of the Reston Stable Isotope Laboratory (RSIL).
Source of the RM: These four reference waters were prepared by gravimetrical mixing of the new International Atomic Energy Agency (IAEA) reference water IAEA-606 \((\delta^2H = 15993.6 \pm 1.0 \, \%o)\) with a well-characterised natural water \((\delta^2H = -42.7 \pm 0.4 \, \%o)\) under the direction of H. A. J. Meijer (Centrum voor IsotopenOnderzoek (CIO), University of Groningen, Netherlands) [7]. The mixing process was conducted along the lines described in Faghihi et al. [7] in which the same batch of natural water was used. Their uncertainty is inherited from the uncertainty in the natural water, with only negligible influence by the uncertainty in the water enriched in \(^2\)H. Each reference water was homogenized at the RSIL, loaded into 5-mL glass ampoules, and sealed with a torch. Each ampoule was inverted and autoclaved at about 120 °C for a minimum of 20 minutes to terminate biological activity. Each ampoule was weighed to identify and eliminate any leaking ampoules.

Stability: GFLES-1, GFLES-2, GFLES-3, and GFLES-4 are stable at normal room temperatures. The reference values in this Report of Investigation apply only to freshly opened ampoules.

Expiration of Reference Value: The reference values for the isotopic compositions of GFLES-1, GFLES-2, GFLES-3, and GFLES-4 are valid until December 31, 2022, provided the RM is handled in accordance with the instructions given in this Report of Stable Isotopic Composition (see “Instructions for Use”). The reference value is nullified if the glass ampoule containing the RM is broken.

Instructions for Use: This RM is intended for calibration of instrumentation and for calibrating unknown waters by interspersing aliquots of the RM among water sample unknowns. The unused fraction of this RM should be discarded after opening an ampoule due to the strong possibility of evaporative losses causing significant isotopic fractionation.

Reporting of Stable-isotope-delta Values: The following recommendations are provided for reporting stable hydrogen and oxygen isotope-delta values [4]. It is recommended that:

- The \(\delta^2H\) values of all hydrogen-bearing substances be expressed relative to VSMOW-SLAP on a scale where \(\delta^2H_{\text{SLAP}} = -428 \, \%o\) exactly or \(\delta^2H_{\text{SLAP}^2} = -427.5 \, \%o\) [8].
- The \(\delta^{18}O\) values of all oxygen-bearing substances be expressed relative to VSMOW-SLAP or relative to Vienna Peedee belemnite (VPDB; for carbonates) on a scale such that the \(\delta^{18}O\) of SLAP = -55.5 \, \%o relative to VSMOW, and for carbonates, such that \(\delta^{18}O\) of NBS 19 calcium carbonate = -2.2 \, \%o.
- Authors report \(\delta\) values of international distributed (secondary) isotopic reference materials as though they had been interspersed among and used for normalization of unknowns, as appropriate, for the measurement method. In this manner, measurement results can be adjusted in the future as analytical methods improve and consensus values of internationally distributed isotopic reference materials change.
- Reporting of \(\delta\) values relative to SMOW and PDB (Peedee belemnite) be discontinued [9].

REFERENCES

